Both Checked on tiddlywiki.com with katex installed.
When using the KaTeX \begin{align} environment with fixed story fluid sidebar the text does not wrap to the river but sticks out past the boundary.
The second appears to be a my wiki/ css problem.
Using the \begin{align} environment should number the equations down the right hand side.
on tiddlywiki.com this happens correctly, ie (1) (2) (3) against each equation.
On my wiki i get (1) (1) (1)…
The issue appears to be with @telmiger 's stylesheet for textstretch.
Can be found here
Deleting the ‘Foot notes and numbering’ section of the css seems to fix the katex problem.
/* * * * * * * * * * * *
** Footnotes with Numbers
* * * * * * * * * * * * */
body {
counter-reset: notenr; /* set counter to 0 */
}
div .tc-tiddler-frame {
counter-reset: tidnotenr;
}
.strex-container.storynumbers {
counter-increment: notenr; /* counter +1 */
}
.strex-container.numbers {
counter-increment: tidnotenr;
}
button.strex-open.storynumbers::before,
button.strex-start.storynumbers::before {
content: counter(notenr); /* Display the counter */
font-size: xx-small;
vertical-align: top;
}
button.strex-end.storynumbers::after {
content: counter(notenr);
font-size: xx-small;
vertical-align: top;
}
button.strex-open.numbers::before,
button.strex-start.numbers::before {
content: counter(tidnotenr);
}
button.strex-end.numbers::after {
content: counter(tidnotenr);
(Engineer's Text Book — A Hyperlinked Guide For Engineers)
Any thoughts anyone?
@pmario @jeremyruston
My wiki: Engineer's Text Book — A Hyperlinked Guide For Engineers
Test code:
$$\begin{align}
\frac{B}{T_1}-\frac{B}{T_2}&=(\ln (\mu_1)-\ln (D))-(\ln (\mu_2)-\ln (D)) \\
\text{a }-,-= + \text{ so:} \\
\frac{B}{T_1}-\frac{B}{T_2}&=\ln (\mu_1)-\ln (D)-\ln (\mu_2)+\ln (D) \\
\text{This means the } \ln(D) \text{ drops out} \\
\frac{B}{T_1}-\frac{B}{T_2}&=\ln (\mu_1)-\cancel{\ln(D)}-\ln (\mu_2)+ \cancel{\ln(D)} \\
\frac{B}{T_1}-\frac{B}{T_2}&=\ln \mu_1- \ln \mu_2 \\
\text{at this point it is worth noting that: }
\frac{B}{T}=BT^{-1} \\
BT^{-1}_1-BT^{-1}_2&=\ln \mu_1- \ln \mu_2 \\
\text{Putting }T \text{ into brackets:} \\
B(T_1^{-1}-T_2^{-1})&=\ln \mu_1- \ln \mu_2 \\
B&=\frac{\ln \mu_1- \ln \mu_2}{T_1^{-1}-T_2^{-1}}
\end{align}$$